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We study the spontaneous nonmagnetic time-reversal symmetry breaking in a two-dimensional Fermi liquid
without breaking either the translation symmetry or the U(1) charge symmetry. Assuming the low-energy
physics is described by fermionic quasiparticle excitations, we identified an “emergent” local U(1)Y symmetry
in momentum space for an N-band model. For a large class of models, including all one-band and two-band
models, we found that the time-reversal and chiral symmetry breaking can be described by the U(1)" gauge
theory associated with this emergent local U(1)Y symmetry. This conclusion enables the classification of the
time-reversal symmetry-breaking states as types I and II, depending on the type of accompanying spatial
symmetry breaking. The properties of each class are studied. In particular, we show that the states breaking
both time reversal and chiral symmetries are described by spontaneously generated Berry phases. We also show
examples of the time-reversal symmetry-breaking phases in several different microscopically motivated models
and calculate their associated Hall conductance within a mean-field approximation. The fermionic nematic
phase with time-reversal symmetry breaking is also presented and the possible realizations in strongly corre-

lated models such as the Emery model are discussed.
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I. INTRODUCTION

In this paper we consider the effects of the spontaneous
breaking of time-reversal (T) invariance in electronic sys-
tems. This is a problem of considerable current interest par-
ticularly in the context of strongly correlated systems. While
the physics of strong correlation is important, many aspects
of spontaneous time-reversal symmetry breaking are not well
understood even at the level of weakly coupled systems, well
described by Fermi-liquid theory. The problem that we will
consider is that of the possible quantum phase transitions to
states in which time-reversal invariance is spontaneously
broken in electronic systems with several Fermi surfaces and
how to classify them.

One of the most important consequences of the spontane-
ous breaking of time reversal is that these ground states may
exhibit a spontaneous (nonquantized) anomalous Hall effect.
More specifically, we consider Fermi systems with multiple
Fermi surfaces with condensates in the particle-hole channel
that break time-reversal invariance. As a consequence, these
systems have a nontrivial relative Fermi-surface Berry cur-
vature which quantifies the strength of the time-reversal
symmetry breaking. The theory that we present here has a
close connection with Haldane’s analysis of the anomalous
Hall effect as a Berry curvature on the Fermi surface.! The
nontrivial new effect that results from these states is that they
exhibit a spontaneous anomalous Hall effect, i.e., present
even in the absence of extrinsic effects such as magnetic
impurities or external magnetic fields.

Time-reversal symmetry breaking in the absence of exter-
nal magnetic fields or spontaneous spin ordering has been a
focus of interest in condensed-matter physics for quite some
time, at least since the discovery of high 7, superconductiv-
ity in the copper oxide materials. Quite early on it was pos-
tulated that frustrated two-dimensional (2D) quantum antifer-
romagnets may have “chiral spin liquid” phases (or ground
states), translationally invariant states without magnetic
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long-range order.>™ The known behavior of high T, super-
conductors does not appear to be consistent with a spin lig-
uid ground state. The discovery of time-reversal symmetry-
breaking effects in recent experiments on Sr,RuO, and in
underdoped YBa,Cu;0g,, (and similar systems) has renewed
the interest in understanding time-reversal symmetry-
breaking phases in strongly correlated electronic systems.

The main purpose of this paper is to inquire if it is in
principle possible to have an electronic system with a non-
magnetic translationally invariant ground state that breaks
spontaneously time-reversal invariance. Such a system
would exhibit a spontaneous Hall effect and a Kerr effect
even in the absence of disorder and/or magnetic fields. We
will focus here on simple models of quantum phase transi-
tions in electronic systems without ferromagnetism or any
other form of long-range magnetic order. We will further
assume that these systems have well-defined electronic qua-
siparticle excitations and are hence extensions of Fermi-
liquid theory. This assumption is valid for any mean-field
approaches and, as will be shown in Sec. VI, is valid even if
the fluctuations of the order parameter around its mean-field
value are considered for lattice models. We will see that,
even in this “weak-coupling” approach, states with the de-
sired properties are physically sensible. (Naturally, the naive
applicability of the details of this theory to a regime of strong
correlations, necessary in the context of the cuprates, is ques-
tionable.)

Within this weak-coupling approach, time-reversal break-
ing phases can be described in terms of properties of the
resulting one-particle states and of their effective Fermi sur-
faces. Of particular importance is the fact that a system with
N Fermi surfaces obtains an emergent (and approximate) lo-
cal gauge (in momentum space) U(1)®--- @ U(1)=U(1)V
symmetry near the Fermi-liquid fixed point.

In Sec. IT we show that the natural way to represent this
structure is in terms of an Abelian gauge theory of N gauge
fields. These gauge fields describe the quasiparticle Berry
phases® in the sense discussed recently by Haldane.! For sys-
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tems with one or two band(s), the structure of T symmetry
breaking is described by these gauge fields and the symmetry
properties of the quasiparticle dispersion relation under space
inversion. However, for more than two bands, more complex
T symmetry-breaking phases arise involving additional time-
reversal breaking operators which are neither Berry connec-
tions nor the space inversion symmetry of the quasiparticle
dispersion relations. Nevertheless, the Berry connections and
the inversion symmetry of the quasiparticle dispersion rela-
tion still describe a large class of the T symmetry-breaking
states even in multiband models.

We will only consider the T symmetry-breaking phases
described by these gauge fields (Berry phases) and the inver-
sion symmetry of quasiparticle dispersion relations. Within
this constraint, the systems that we describe are invariant
under the combined transformation of CIT, where C is the
chiral transformation (i.e., a mirror reflection) and I stands
for space inversion. With the CIT symmetry, the T
symmetry-breaking states can be classified into two classes,
according to the accompanying C or I symmetry breaking.
We refer to the states that preserve all three symmetries C, I,
and T, as the normal states. As for the T symmetry-breaking
states, if the inversion I symmetry is also broken but the
chiral C and the combined IT symmetries are preserved,
these states will be referred to as type L. In contrast, the states
that break T and C but preserve CT and I will be referred to
as the type II states. The states that break all three of C, I,
and T are considered as a mixing of types I and II. Obvi-
ously, type I states have no Kerr or Hall effect, but type II
may have. The type I state is somehow trivial if we notice
that the momentum k changes sign under I or T. Hence, in
this paper, we mostly concentrate on the type II states.

Using the Berry connections, we show that type I phases
may appear in one-band or multiband models. However, the
type II phases can only be found in multiband models. The
phase transitions from the normal phase to type II phase can
be classified into two different scenarios depending on
whether the band structure has degeneracy points or not (de-
generacy lines or areas usually require fine tuning and will
not be considered).

After exploring the general theory, we use mean-field
theory to investigate the T symmetry breaking in several
specific models. In Sec. III, we study the general symmetry
properties of the (fermion bilinear) order parameters in the
particle-hole channel for systems whose band structure con-
tains no degeneracy point and show that the type II T
symmetry-breaking states requires two order parameters.

In Sec. IV, we present a mean-field study of 2D Fermi
liquids with continuous rotational and translational symme-
tries and time-reversal invariance. In this section we discuss
the possible patterns of spontaneous breaking of time-
reversal invariance, inversion and chiral symmetries, and ro-
tational invariance in interacting metallic systems. Although
the models we discuss here use the framework of the Landau
theory of the Fermi liquid, the patterns of symmetry breaking
that are found, as well as the resulting phenomenology, are of
more general interest. In a Landau-type model with four fer-
mion forward-scattering interactions, analogous to the type
discussed in Refs. 7 and 8, time-reversal symmetry-breaking
phases can be stabilized and are usually accompanied by
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rotational symmetry breaking. In a one-band model, the type
I phases can be reached through a Pomeranchuk instability”
in odd angular momentum channels (with angular momen-
tum € > 1), nematiclike phases with broken space inversion,
and time reversal. However for two-band models type II
phases may also appear and have a similar structure to the 8
phases in fermionic systems with spin described in Refs. 8
and 10. In this section we construct the phase diagram. Here
we also evaluate the Hall conductance for these phases,
which is not quantized since these phases are gapless and
conducting. We also show that the Hall conductance found
here is related with a topological index, the Kronecker index
of the homotopy mappings S' — S, i.e., 7,(S'). This in turn
implies that the T symmetry breaking in these phases is
stable against adiabatic perturbations even though the actual
value of the unquantized Hall conductance is not universal
and can be changed continuously.

In Sec. V, we generalize these T symmetry-breaking
phases to lattice models and discuss subtle effects arising
from the degeneracy points in the band structures. In particu-
lar we show that without degeneracy points, the time reversal
T and chiral C symmetry-breaking phase can be reached
from a normal Fermi liquid either by a direct first-order tran-
sition or by two separate phase transitions through an inter-
mediate phase characterized by rotational symmetry break-
ing. But in the presence of degeneracy points, the direct
transition between the T and C symmetry-breaking phases
and the normal Fermi liquid may be second order.

Finally, in Sec. VII, we present a discussion of the experi-
mental consequences of this work. The relation between this
work and its particle-particle channel counterpart is also dis-
cussed, as well as the similarities and differences with the
phases studied in Ref. 8. We present details of the calcula-
tions for two-band models in Appendix A. The topological
and physical meaning of the Wilson loops introduced in Sec.
I is discussed in Appendix B. In Appendix C, we present the
details of the calculation of the Hall conductivity, and in
Appendix D, the symmetry of the a, and B3, phases (to be
defined below) is discussed.

II. GAUGE THEORY AND BERRY PHASE

In this section, we study the general properties of the
spontaneous T symmetry breaking for a fermionic system,
which we will assume to be well described by an effective
Fermi liquid, i.e., a fermionic system with well-defined qua-
siparticle excitations which are asymptotically free at low
energies. We will also assume that time-reversal invariance is
not broken explicitly and hence that there is neither an ex-
ternal magnetic field nor any sort of magnetic long-range
order. We will consider systems without magnetic impurities,
trapped magnetic fluxes, or other explicit extraneous time-
reversal symmetry-breaking effects. For one- and two-band
models, we will show that:

(1) the T symmetry-breaking effects are represented ei-
ther by the existence of Berry phases or by the symmetry
properties of the quasiparticle dispersion relation under space
inversion;
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(2) there is a CIT symmetry, where T is time-reversal, C
is a chiral transformation(reflection across a suitable mirror
plane), and I is space inversion;

(3) in the absence of explicit breaking of T, the total
Berry phase of all the bands is zero, 2,$71.=0;

(4) there is no type II T symmetry breaking in a one-band
model;

(5) degeneracy points of the effective band structure (de-
fined later) have an associated quantized Berry flux nar, with
integer n; and

(6) systems with and without degeneracy points have dif-
ferent properties when undergoing a phase transition to a
type I T symmetry-breaking phase.

Here type I (breaking I and T) and type II (breaking C
and T) refer to the two types of T breaking phases discussed
in Sec. I. For models with more than two bands, we will
show that by assuming 1, all other conclusions above can be
generalized easily.

The low-energy properties of a Fermi liquid are described
by its spectrum of quasiparticle excitations, i.e., Bloch waves
and their dispersion relation. The dispersion relation €,(k),
where n is the band index with n=1,2,...,N for an N band
model, transforms to €,(—k) under time reversal T or space
inversion I but is invariant under chirality C or the simulta-
neous action of T and I. Hence, the odd part of the disper-
sion relation, €,(k)—¢,(—-k), describes type I T symmetry
breaking.

The Bloch waves may also contain information of the T
symmetry breaking. Due to the (perturbative) irrelevance at
low energies of the quasiparticle interactions under the renor-
malization group (RG),'! a Fermi liquid with N bands is
invariant under a U(1)" gauge transformation,

[, (K)) — e, (K)). (2.1)
where |i,(k)) is the Bloch wave function of the band n. This
U(1)" gauge symmetry, associated with independent redefi-
nitions (gauge transformations) of the phase of the quasipar-
ticle Bloch states for each band at each wave vector Kk, is an
emergent symmetry, asymptotically accurate only close
enough to the Fermi-liquid fixed point. Away from this fixed
point, the irrelevant quasiparticle scattering processes make
this U(1)" symmetry an approximate one. This effect can be
studied perturbatively as will be shown in Sec. IV D but can
(and will) be ignored for the purposes of the present discus-
sion.

To remove the redundant degrees of freedom, one defines
the overlap matrix,'?

A== i, (K) | Vit (K)). (22

The diagonal terms, Aj , are Berry connections which under

the gauge transformation of Eq. (2.1) transform as gauge
fields:

a a a
Ann - Ann + Vngn'

(2.3)

The off-diagonal terms, for n # m, transform instead as
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a —ip, A4 i
Anm_>e nAnme ",

(2.4)

which cannot be regarded as gauge fields. Clearly the over-
lap matrix A7 = are the matrix elements of the position op-
erator in Bloch states.!” The diagonal terms are directly re-
lated with the “anomalous velocity” in the semiclassical
theories of Bloch waves.'3

It is well known from the theory of the Hall effect (see,
for instance, Haldane’s work! and references therein) that an
external magnetic field induces a nontrivial Berry curvature.
This affects all the bands in essentially the same way. In
what follows we will assume that time-reversal invariance is
not broken explicitly by external fields. Thus, the total Berry
curvature vanishes as required by Eq. (Al).

We now restrict our discussion on T symmetry breaking
that can be described by the diagonal terms .A,, alone. As
shown in Appendix A, this assumption is automatically sat-
isfied for all one- and two-band models. For systems with
three or more bands it is also possible to have phases that
break time-reversal invariance which are described purely by
off-diagonal operators, A,,, (with n# m). Even though they
do break time-reversal, these states do not have a Berry
phase and, consequently, will not have a spontaneous anoma-
lous Hall effect. We will discuss in Sec. V that one of the
so-called Varma loop states, 6; in the notation of Ref. 14, is
an example of a time-reversal symmetry-breaking state in a
three-band model without an anomalous Hall effect.

From now on, only the diagonal terms 4,,, will be con-
sidered. Their gauge-invariant physical degrees of freedom
are described by the Wilson loops,

Wy = exp(i®}). (2.5)

f=0 AL dk, (2.6)
I' a
which is also the Berry phase.! Notice that in principle one
can consider any path I" in momentum space. In practice, for
a gapless system the path of physical interest coincides with
the location of the Fermi surfaces of the bands (see below).
Under the action of the chiral transformation C, space
inversion I, and time reversal T, the Wilson loops W} trans-
form as

CWr = (Wp)", (2.7)
IWp = W, (2.8)
TWr = (Wyp)". (2.9)

The chiral transformation C reverses the orientation of the
path, I'—-I", and hence, it transforms W} into its complex
conjugate. The space inversion operator I changes momen-
tum k to —k, which changes the integration contour but pre-
serves its direction. The time-reversal operator T is antiuni-
tary. It changes k to —k as I but also changes the Wilson loop
to its complex conjugate, which is also how C acts. There-
fore, Wy is invariant under CIT. Since the dispersion relation
is invariant under IT (and C), then the system must be in-
variant under CIT. This is one of the key results of this
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paper, which makes the classification of the types I and II T
symmetry-breaking states possible.

As we noted above, in the absence of magnetic fields (and
of any other explicit breaking of time reversal), there is a
constraint over the total Berry phase,

> D=0, (2.10)
which implies that there is no Berry phase associated with
the charge sector, the overall U(1) gauge group. However, in
the presence of magnetic fields, the phase of the Bloch wave
cannot be determined in a unique and smooth way over the
entire Brillouin zone.'> This invalidates the assumptions be-
hind Eq. (A1), leading to a nontrivial Berry phase in the
charge U(1) sector and a nonvanishing Hall conductance. On
the other hand, in the absence of external magnetic fields,
although the constraint of Eq. (2.10) prevents the charge
U(1) sector to obtain a Berry phase, a nontrivial relative
Berry phase between different bands is still allowed. This is
the key point in our study of a spontaneous T symmetry
breaking without magnetic ordering that we are interested in
here.

For a one-band model, the constraint that the total Berry
phase must be trivial, 2,®}.=0, implies that the Wilson loops
must be real, WF=WF. Hence, the Wilson loop is an eigen-
vector of the chiral transformation C, i.e., CWr=Wrp, and the
IT symmetry always holds. Thus, for one-band models, only
type I time-reversal spontaneous symmetry breaking is al-
lowed.

Let us consider now the case of two-band models which
allow for a richer structure. In this case Eq. (2.10) now be-
comes ®[+®d2=0. Hence, only one Berry phase ®} (or
equivalently <I>12~) is linearly independent. For a state with C,
or equivalently IT, symmetry (the normal state or the type I
state), again one obtains W}:(Wf)*, which quantizes the
Berry phase to be @}:nw, with integer n. Conversely, if C
and IT are broken, the symmetry breaking is type II. In this
case, T symmetry breaking in two-band models can be de-
scribed by WlF obtaining an imaginary part. Equivalently, the
Berry phase (IJIL becomes nonquantized for a type II time-
reversal symmetry breaking.

The effective one-particle Hamiltonians of a two-band
model has the form of a 2 X 2 Hermitian matrix whose coef-
ficients are smooth functions of the momentum k. In Appen-
dix B we use standard arguments®!® to relate the Berry phase
for this system to a Wess-Zumino term, familiar from the
path integral for spin (see, e.g., Ref. 17). The Berry phase
actually equals half of the Wess-Zumino term. For a specific
contour, where I" coincides with the Fermi surface, the Berry
phase is proportional to the Hall conductance,! as reviewed
in Appendix C. For an insulator, which does not have a
Fermi surface, the contour is the boundary of the Brillouin
zone. This leads to the well-known quantization of the Wess-
Zumino term as a Chern number, and it implies the quanti-
zation of the Hall conductance. However, for a metallic state,
the contour I' is the Fermi surface, and the manifold is no
longer compact. As emphasized by Haldane,' in this case the
Hall conductance is in general not quantized, which leads to
anomalous Hall effect. In Sec. IV C, the anomalous Hall
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conductance for the metallic spontaneous type II T
symmetry-breaking phase in a specific model will be com-
puted within a mean-field approximation.

We end the discussion of this section by emphasizing one
property of the Berry phase for later use. For systems with
IT symmetry, i.e., Pp=n, field strength,
FoP = Vi AL - VRAS,

n

2.11)

is zero away from degeneracy points (i.e., for points in mo-
mentum space where the bands have different energy). How-
ever, at degeneracy points (i.e., points in momentum space
where two or more bands have the same energy) the field
strength may have Berry flux nr, with integer n. As will be
shown later, this difference of the Berry phase leads to dif-
ferent phase transitions in type II T symmetry breaking. In
the rest part of this paper, we will study specific microscopic
models where the conclusions above are applied.

III. ORDER-PARAMETER THEORY WITHOUT
DEGENERACY POINT

In this section, we study systems without degeneracy
point in the band structure by writing down order parameters
in the particle-hole channel that preserve both translational
and charge U(1) symmetries, the most general ground-state
expectation values of bilinears in fermion operators of the
form,

0= 2 (end|y (KM (K) ¢, (k)|gnd),  (3.1)

k.n,m

where /(k) and ¢,(k) are the fermionic creation and anni-
hilation operators and k is the momentum of the quasiparti-
cle; the indices n and m label the bands. The spin indices are
dropped since we are not considering spin ordering. Each
Hermitian matrix M defines a real order parameter O (com-
plex order parameters are two real order parameters).

In the absence of band crossings, the IT symmetry im-
plies the existence of a special gauge in which A; =0. With
this gauge choice, under I and T, M (k) transforms as

IMK)I' = M(=Kk), (3.2)

TM(XK)T ' = M*(=K). (3.3)

The fermion bilinears defined in Eq. (3.1) can always be
expressed in such a way that transform irreducibly under the
symmetries of the system. Here we are interested in particu-
lar in their transformation properties under time reversal. In
mean-field theories, such as the one we will discuss in Sec.
IV, the one-particle effective Hamiltonian depends linearly
on these fermionic bilinear order-parameter fields. Thus, a
nonvanishing expectation value of the order parameter
breaks the symmetry.

It is not possible to have a state that breaks spontaneously
time-reversal invariance in a way that cannot be compen-
sated by another symmetry transformation. In Sec. IV A we
will construct a state in one-band model with a ground state
that breaks T which however must also break I, space inver-
sion. This model, which has an order parameter in the
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FIG. 1. (Color online) Fermi surfaces of phases with Pomeranchuk instability with [(a)-(d)] /=2, 3, 4, and 5. Odd ¢ states break the I and

T symmetries but preserve IT.

particle-hole channel with angular momentum €=3, is an
explicit representation of the “Varma loop” state (6y) dis-
cussed recently by Varma'# as a T breaking state. The state
is, however, also odd under I but invariant under IT and
under chirality C. Thus, this is a type I state in the classifi-
cation discussed in Sec. I. As a consequence this state does
not have a spontaneous anomalous Hall effect or a uniform
Kerr effect in the absence of external magnetic fields or de-
fects. (In this sense this pattern of time-reversal symmetry
breaking is analogous to that of a Néel antiferromagnet, in
which time reversal and translation invariance by one lattice
constant are broken but the combination of both is not.)

In order to obtain a state with time-reversal symmetry
breaking but without space inversion symmetry breaking, it
is necessary to have at least two bands. For two-band mod-
els, even though the natural symmetry in this case is U(1)
X U(1), it can be naturally embedded in a the larger U(2)
group (even though it is not a symmetry). To obtain a ground
state with broken time-reversal invariance it is necessary to
break U(2) completely (down to its center, the 7, subgroup).
This requires that two (noncommuting) generators of U(2)
must be broken in the ground state. Thus the order parameter
has two components and cannot be made real by a gauge
transformation. Similarly, the eigenstates of the effective
one-particle Hamiltonian are complex. A system with these
properties will have a nontrivial Berry connection. It turns
out that it also breaks chirality, C, but it is invariant under
CT. Hence, this state corresponds to a type II time-reversal
symmetry breaking. A state of this type has a spontaneous
anomalous Hall effect and a Kerr effect even in the absence
of external magnetic fields and defects. Examples of states of
this type in the particle-particle channel are the well-known
T breaking spin triplet p,+ip, and spin singlet d,2>_2+id,,
superconducting condensates. Similarly, the d,_2+id,,
d-density wave (dDW) state breaks time reversal and trans-
lation invariance [with Q= (7, 7)] in the particle-hole chan-
nel.

In Secs. IV and V we present some simple models con-
taining the types I and II T symmetry-breaking states. For
simplicity, only one- and two-band models will be studied.
However, the conclusion can be generalized to multiband
models with little effort.

IV. ROTATIONALLY INVARIANT MODELS

Let us consider a 2D isotropic fermionic system with
Hamiltonian,

H= E lr//j;(k)[en(k) - Iu“] (//n(k) + Hint? (41)
k.n

where €,(k) is the single-particle kinetic energy for band n
and u is the chemical potential. H;, is the interacting part of
the Hamiltonian. Here we only consider the forward-
scattering interactions.

A. One-band model

In a one-band model, H;, can be expanded into different
angular momentum channels, denoted by the angular mo-
mentum quantum number €. If the coupling constant in some
channel, f,, is attractive and strong enough to violate the
Pomeranchuk condition, f,N(0)+2<0, where N(0) is the
density of states at the Fermi level, then the spherical Fermi
surface becomes unstable, leading to a spontaneously dis-
torted Fermi surface as shown in Fig. 1. This is the Pomer-
anchuk instability.” The case of the £=2 channel is the elec-
tron nematic phase.”'® Similar condensates for other even
angular momentum channels can also be (and have been)
considered.

In the case of odd angular momentum channels both time
reversal T and space inversion I are spontaneously broken,
but the product TI remains unbroken as these states are not
chiral: C is unbroken. These states correspond to the type I T
symmetry-breaking states. As can be seen from Figs. 1(b)
and 1(d), the chiral symmetry is preserved and the T sym-
metry can be recovered by space inversion.

B. Two-band model with U(1)® U(1) symmetry

Let us now consider the case of a two-band model. It can
be either a system with two bands due to band-structure ef-
fects or a bilayer system with a small amount of hybridiza-
tion (the bonding and antibonding Fermi surfaces are close).
We will assume that the system has full translation and rota-
tion symmetries (which will reduce to a point-group symme-
try for a lattice system). As before (and for simplicity) we
will assume that the system is nonmagnetic (so that the spin
degrees of freedom yield only a redundant effect) and that
the Fermi surfaces are such that the system is not unstable to
the formation of charge-density waves or any other instabil-
ity. We will also ignore possible superconducting states.

We will also assume that the separation between the two
bands is small and only the forward-scattering channels need
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to be considered. Under these approximations, the scattering
processes can be classified by their angular momentum chan-
nels, as in the case of the one-band model, and we can define
bosonic fields (fermion bilinears),

bop@= 2 :¢Z(k+ g)cos(eok)of;'"wm(k_ 9):,

k,n,m 2
(4.2)
b= 2 ilﬁjl(k + g)sin@&k)aﬁmlﬁm(k - %)
k,n,m
(4.3)

Here :¢4: stands for the normal-order product, relative to
the ground state of a Fermi liquid (or gas). Here n,m=1,2
label the two bands. The matrices o, are the identity matrix
for u=0 and the Pauli matrices for u=x, y, or z. 6, is the
polar angle of the momentum vector k.

With these definitions, H,, can be written as the sum of
all quadratic terms in ¢y, , and ¢, ,, that preserve momen-
tum and angular momentum. We further assume that the in-
stability only occurs in one angular momentum channel ¢ so
that collective excitations in all other angular momentum
channels are gapped and irrelevant at low energies. For now,
we only consider one particular interaction Hamiltonian H;,
of the form,

Hiy=2 fdg) 2 2 i bu-a). (44
q

2 i=1,2 p=x,y

Written in terms of fermionic operators, we can see that this
interaction  corresponds to the scattering channel
:WIL Uy lﬂ; ;. Other scattering channels will be studied later
in Sec. IV D.

In addition to the U(1) charge symmetry, this Hamiltonian
has an extra internal U(1) symmetry corresponding to the
relative phase between the two bands. This is because the
interaction H,, preserves particle number in each band. This
high symmetry requires some amount of fine tuning, but as
we will show later, most of the properties are preserved even
in the absence of this symmetry (at least perturbatively).

Just as in the case of the one-band model discussed in
Sec. IV A, if an interaction in some angular momentum
channel is attractive and in magnitude exceeds a critical
value, the ground state of the system becomes unstable. The
corresponding order parameters can be taken to be two two-
component real vectors in the U(1) relative phase manifold,

bui= (bui{a=0)).( e (q=0))), (4.5)

with i=1 or 2. Notice that we use bold characters to repre-

sent vectors in space (or momentum space) but use qz to
indicate the two two-component real vector order parameters
which form a representation of the nondiagonal piece of
U(1)®U(1) group.

In order to preserve the spatial symmetries and the inter-
nal U(1) symmetry, the Landau free energy has the form,
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FIG. 2. (Color online) The phase diagram with exact relative
U(1) symmetry. Thick lines are first-order phase boundaries and
others are second-order ones. The black dot is a tricritical point. The
dashed circle is a critical point where the first-order phase boundary
meets two second-order phase transitions.

F=m(|o* +|bel?) + u(| ger? + | deal ) + 40(| b1 X o))

+ higher-order terms. (4.6)

This free energy is very similar to the spin Pomeranchuk
instability states in Ref. 8, except that the internal symmetry
here is the relative phase U(1) instead of the spin SU(2). The
resulting mean-field phase diagram for the system at hand is
shown in Fig. 2.

The coefficients of the free energy can be determined by a
mean-field calculation in the same spirit as that of Ref. 8. We
obtain

_ (1@ ! ) AzN(O)[3<N'(0))2 N"(O)}
"=\ T 2n0) TS e |7\ 0y ) T M) |

(4.7)

_NO)| (N'(0)\* N"(0)
"o {2( N<0>> ~NO) } “8
v=]% (4.9)

Here A is the energy splitting between the two bands, which
is assumed to be much smaller than the Fermi energy e,
A<<ep; N(0) is the density of states at the Fermi surface
calculated using the average dispersion relation [e;(k)
+¢&(k)]/2. N'(0) and N"(0) are the first- and second-order
derivatives of the density of states N(€) at the Fermi surface.
Higher-order terms will be needed for stability reasons if u
<0 or u+v <0. For simplicity, we only consider #>0 and
assume that the higher-order term is w(| i[>+ |eal?)?, with
w>0.

We will now discuss the structure of the phase diagram of
Fig. 2. The system has three phases: (a) the normal phase
with ¢y = b, =0, (b) the a phase in which ¢, X ¢, =0, and
(c) the B phase in which they are orthogonal, J’m . Jsm:o and
|¢1=|bpal. For u>0 and u+v >0, m=0 marks the second-
order phase boundary between the normal state and either the
a or the S8 phase, depending on the sign of v.
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FIG. 3. (Color online) The Fermi surface in (a) @, (b) By, (¢) ay, (d) B,, (€) a3, and (f) B; phases in the £=2 channel of a two-band
model. The dashed (solid) lines are the Fermi surfaces of the normal (symmetry broken) phases. The small arrows in (b), (d), and (f) show

the relative phases of the fermions in the two bands.

To distinguish this a phase with other similar phases
which will be discussed below, we indicate this phase as «;
in the phase diagram of Fig. 2 (same with the B phase). This
phase has a distorted Fermi surface, as shown in Fig. 3(a). In
the «; phase, the Fermi surfaces of both bands are distorted,
and their rotational symmetries are reduced from SO(2) to a
2¢-fold discrete symmetry. The «; phase preserves the T
symmetry as well as I and C. A similar phase on the square
lattice is discussed in Ref. 19, where it is referred to as the
“hidden nematic phase.”

For v <0, the system is in the 3; phase. In this phase, the
Fermi surfaces of the two bands remain isotropic with shifted
Fermi wave vectors, but the relative phases between the two
bands are locked to each other. The relative phase changes
by *=2{ around the Fermi surface, as shown in Fig. 3(b).
From a topological point of view, the 3; phase is a map from
the Fermi surface S! to the S' manifold of the U(1) symmetry
group. The nontrivial homotopy group 7;(S') of this map-
ping is described by the Kronecker index, the winding num-
ber, which is the angular momentum quantum number €.
Under the T or C transformation, the Kronecker index
changes sign. Therefore, the B; phase breaks the T and C
symmetries but preserves their combination. Hence, the S;
phase is a type II state and the topological nature of the
Kronecker index guarantees that the two degenerate T
symmetry-breaking ground states of the [3; phase cannot be
transformed into each other by any continuous processes.

The v=0 line marks the first-order phase boundary be-
tween the «; and B; phases. When u+v <0, a first-order
phase transition to the ; phase occurs with decreasing m
and this first-order phase boundary meets the second-order
one at a tricritical point, the black dot in Fig. 2.

C. Hall conductance of the ; phase

The B; phase is a type II T-breaking state with a nonzero
spontaneous Hall conductance o,. As shown in Appendix C,
following the results of Haldane,! the value of the Hall con-
ductance o, is quantized for an insulator but not for a con-
ductor such as the 8 phase. However, we can still relate o,
with the Kronecker index of S' —S'.

Applying Eq. (C1), for the B, phase, the integration re-
gion of the integral is the annular region comprised between
the two Fermi surfaces of the two bands. If the energy dif-
ference between the two bands is small, the z component of
n defined in Eq. (B2) of Appendix B can be taken as a con-
stant. Under this approximation, the Hall conductance is

1-n) [ dk
nl = n;) (AN, - Vi), (4.10)
Fs 27 )

Oy = 7

where i1, =n,/ \e"rnf and ny,=n,/ \e"l——nf can be considered as
the x and y components of a two-dimensional unit vector (by
definition, |n<1 in B phase). The integral above is taken
around the Fermi surface and measures the Kronecker index
of §'—S!, which counts the number of times the relative
phase winds around the Fermi surface. Notice that the
prefactor of the integral, n,(1 —nf)/ 4 is unquantized and can
be changed continuously. Hence, as expected, o,, is not
quantized in this phase. In particular, o, vanishes if the
Fermi surfaces coincide, n,=0. V

D. Effects of U(1)®U(1) symmetry-breaking interactions

We now study the effects of interactions that were not
considered in Sec. IV B. The interactions that preserve the
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particle number in each band, for example, :(//Ilffli :z,biz/q:,
cannot change qualitatively any conclusions of Sec. IV B
since these scattering processes preserve the relative U(1)
symmetry of the two bands. On the other hand, interactions
that change the particle number of each band, such as
s i or sy i, break the relative U(1) sym-
metry and potentially can make a difference. However, we
can still distinguish the two different ordered phases, a and
B, depending on whether <Z>€1 X @2 vanishes or not.

To distinguish from the o and B, phases of Sec. IV B, we
refer to the o and B phases for models with :1,0{(//2: :1//}1#2:
interactions but not :1//{(/;1 i z/f{ ,: interactions as the a, and
B, states. The corresponding phases when both these two
kinds of processes are present will be denoted by a3 and B,
respectively. The a; and B35 phases are the most general ones
and do not require fine tuning. The main issue we will be
interested in is to determine if these are genuinely distinct
phases, i.e., if the order parameters have a different behavior
in all of these cases.

1. @, and a3 phases

Similar to the a; phases, the a, and a3 phases preserve
the C symmetry. As shown in Figs. 3(c) and 3(e), the Fermi
surface of the @, phase has the same 2¢-fold rotational sym-
metry as «;, but the @3 phase has a lower, €-fold, rotational
symmetry. This is because the :1#11}/11: :(/111' Y scattering pro-
cesses couple the order parameters ¢y; , and ¢y; , to the order
parameter of the charge Pomeranchuk instability in each
band,

01, =(2 ¥ (K)cos(€6)) ,(Kk)), (4.11)
k

020 = (2 ¥ (K)sin(£6) ,(K)), (4.12)
k

where 7 is the band index. Hence, Oy, and Oy, also ac-
quire an expectation value in the a; phase, which reduces the
rotational symmetries from 2€-fold down to €-fold. There-
fore, for € odd, the a3 phase is a type 1 time-reversal
symmetry-breaking state.

2. B, and 5 phases

The 3, and B; phases break both T and C symmetries but
preserve CT and hence are type II time-reversal symmetry-
breaking phases. This conclusion becomes obvious if one
notices that the T and C symmetry breakings in the 8 phases
is described by a topological index as shown in Eq. (4.10).
Hence, this property should survive even after adiabatically
turning on scattering processes that do not preserve the rela-
tive U(1) symmetry. However, due to the absence of an exact
relative U(1) symmetry, the symmetry between ¢y, and
¢¢;, is no longer preserved. As a result, these two order
parameters cannot become critical at the same time as one
tunes the control parameters. Hence, in order to reach the 3,
or 3; phases from the normal Fermi-liquid phase, the system
must necessarily either go through a sequence of two phase
transitions, at which one order parameter at a time will get a
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nonzero expectation value, or there will be a direct first-order
transition to a state in which both are nonzero. In addition, in

the B, or B3 phases, although the two order parameters ¢,

and <Z’€2 are still perpendicular to each other, without the
protection of the U(1) relative phase symmetry their magni-
tudes are no longer equal. Hence, in these phases the Fermi
surfaces are no longer isotropic. The 3, phase with angular
momentum channel € has a Fermi surface with 2¢-fold rota-
tion symmetry, as shown in Fig. 3(d). This phase breaks the
T and C symmetries as the 3; phase does but also has Fermi
surface with the same 2¢-fold rotational symmetry as the «
and «, phase. In particular, in the €=1 channel, the 3, phase
is a charge nematic state’'® but with broken T and C sym-
metry. In the B; phase, much as in the case of the «; state,
the :gﬂtpl: :tﬂzﬂz: scattering processes reduce the rotational
symmetry to €-fold, as shown in Fig. 3(f). Hence, the {=2
B3 phase is a charge nematic state with type II T symmetry
breaking.

3. Free energy and phase diagram for the o, and [3, phases

We studied the system without the U(1) relative phase
symmetry by adding the following interactions:

(1)
S 8Dy (@i ) = b (@ iy )]

q;i=1,2 2

(2)
+ E LHC) [beir(q) ¢€i,y(— Q)+ ¢€i,y((I) dei(= )],

q;i=1,2 2
(4.13)

which correspond to the :df{ Py Zl//il//zi scattering processes.
In mean-field theory, the Landau free energy becomes

F=(m+ 82) (¢, + ba,) + (m— 32)(d7, , + i)

+u(| i + | e+ 4v(| by X o)
+ higher-order terms, (4.14)
with u and v the same as in Egs. (4.8) and (4.9) and
N(0) 2N(0>{ (N' (0) )2 N"(O)}
m=— +A 3 -
4 96 N(0) N(0)

1 1
- (4(fe(0) +1g,(0))) ’ 4(f(0) - |ge(0)|)>’
(4.15)

1 1
T 4070) + 2O T 4LF0) - | O]

Here g,= g(€1)+ig%2). In fact, a complex g, adds terms such as
&yixPeiy to the Landau free energy, but upon a suitable ro-
tation, the Landau free energy can be transformed into the
form of Eq. (4.14). The notation is the same as before and

(4.16)

the leading higher-order term is assumed to be w(|gy|?
+|dea)?)?, with w>0 for simplicity.

The phase diagram is shown in Fig. 4. As predicted by the
general symmetry arguments, the @, phase can be reached
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FIG. 4. (Color online) The phase diagram with broken relative
U(1) symmetry. The notation is the same as in Fig. 2. The circle
represents a bicritical point where a second-order phase boundary
and two first-order boundaries meet.

through a second-order phase transition at m=9/2. To reach
the B3, phase one must either go through two transitions
(using the @, phase as an intermediate phase) or by a direct
first-order transition. The transition between the @, and (3,
phases may be first order or second order depending on
details. In this mean-field theory the first-order and second-
order phase boundaries meet at a tricritical point (the
black dot in Fig. 4) located at m=Qu*+3wd
—2u\Nu?+3wd)/(12w) and v=(-u—u?>+3wd)/2. The first-
order phase boundary between a, and [, phases meet the
second-order phase boundary between «a, and the normal
phases, as well as the first-order phase boundary between 3,
and the normal phases, at a bicritical point (the circle in Fig.
4).

For most general interactions, the @3 and (3; phases can
also occur. The a3 and B; phases have a similar phase dia-
gram as the «, and B3, (Fig. 4) and do not exhibit any essen-
tially new phenomena. Hence, we will not present here the
mean-field study for the a3 and B5 phases, which has a simi-
lar structure to what we have already described in this sec-
tion.

V. LATTICE MODELS

Most of the conclusions we reached in the continuum
models in Sec. IV can be generalized to the case of lattice
models in the absence of degeneracy point. One principal
difference in the case of lattice models is that the continuum
rotational symmetry is broken down to a discrete point-group
symmetry. In particular this gaps out the corresponding
Goldstone modes. Another one is that in lattice models the
quantum phase transitions to nematic states (and their gener-
alizations) often (although this is not necessarily always the
case as there are a few known counterexamples) also involve
a topological Lifshitz transition (from closed to open Fermi
surfaces) leading to first-order quantum phase transitions.??!

For one-band models, obviously, the band structure has no
degeneracy points. Same as in the continuous model, only
the type I T broken-symmetry state can exist. As an example,
we study a one-band model on a simple triangular lattice.
This lattice has a sixfold rotational symmetry. With properly
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FIG. 5. (Color online) (a) is the flux state in a simple triangular
lattice and (b) shows the Fermi surfaces. The two dashed lines are
the Fermi surface of the states with flux 0 and # 7 (these two states
can be transferred into each other by a gauge transformation), and
the solid line is for flux = #/10. The rotational symmetry is three-
fold for flux = /10 and sixfold for flux 0 and .

chosen interactions, the system can undergo a Pomeranchuk
instability and form the flux state shown in Fig. 5. In this flux
state, three currents flow along the three bonds of the simple
triangular lattice. As a result, there is a positive flux in each
up-pointing triangle and a negative flux in each down-
pointing triangle. The net current and the total flux in each
unit cell are both zero, but the rotational symmetry of the
Fermi surface will in general be reduced from sixfold to
threefold symmetry, except when the flux in each triangle is
nir for integer n. This is so because a gauge transformation
can change the flux in a triangle by 2n7 and similar effects
are known to occur for the square lattice.’ The same analysis
with very little modification applies to the Varma loop model
O (Ref. 14) and to a model on the square lattice with effec-
tive diagonal hopping terms and the same pattern of time-
reversal symmetry breaking recently discussed in Ref. 22
which are also type I time-reversal symmetry-breaking
states. When the flux is not n7, T=I1#E, where E is the
identity operator. As shown in Fig. 5, the Fermi surface of a
state with flux different from nm has threefold rotational
symmetry, which corresponds to the €=3 Pomeranchuk in-
stability, and this state belongs to the type I T symmetry-
breaking states.

In two-band lattice models without degeneracy points, a
and S phases can also occur much as in the continuum model
discussed before. The simplest example is a bilayer model in
which two layers of a lattice system are separated by a small
distance. If the separation is small enough, three-dimensional
(3D) effects can be ignored. For a bilayer model, two bands
(bonding and antibonding) can be formed and they usually
have no degeneracy. In Ref. 19, Puetter et al. studied a sys-
tem of this type and found a hidden nematic phase on a
bilayer square lattice, which is one example of the «; phase.

For band structures with degeneracy points, the type II
phase just requires one order-parameter quadratic in fermi-
ons. A well-known example is the flux states in the honey-
comb lattice. The band structure of the honeycomb lattice
has two degeneracy points (the Dirac nodal points) at the two
corners of its first Brillouin zone. As shown in Appendix B
and Fig. 6(a), there is a “monopole flux” = 7 passing through
each Dirac point. If the two Dirac points get masses with the
same sign, they cannot cancel each other; the C and T sym-
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FIG. 6. (Color online) (a) The vector field (n,,n,) defined in Eq. (B2) for the honeycomb lattice, which has 1n,=0 and (b) the vector field
(ny,n,) of the crossed-chain lattice, which has n,=0. The blue line marks a Brillouin zone. For the honeycomb lattice there are two
degeneracy points with monopole flux * 7 and for the crossed-chain lattice, there is one with monopole flux 2.

metries are broken, as shown in Fig. 1 of Ref. 23. (A similar
effect is found in the mean-field theory of the chiral spin
liquid.>!”) A recent mean-field study of a system of interact-
ing fermions on the honeycomb lattice (at half filling) shows
that this state can be stabilized by repulsive next-nearest-
neighbor interactions.?*

Another example is a fermionic system on the crossed-
chain lattice as shown in Fig. 7(a). This lattice has two
sublattices.?> The tight-binding model on this lattice has two
bands and one degeneracy point in each Brillouin zone
where the two bands touch. This degeneracy point has mono-
pole flux +27 [Fig. 6(b)]. If the fourfold rotation symmetry
of the lattice is broken explicitly upon the introduction of a
different chemical potential for each sublattice or spontane-
ously via a (quantum nematic) symmetry breaking, the de-
generacy point with flux =2 splits into two Dirac points,
each with flux = . Similar as in the case of the honeycomb
lattice, a Dirac mass term which removes the band crossing
breaks the T and C symmetries. This state corresponds to the
flux state shown in Fig. 7(a) with order parameter,

k k
> sin=sin=(a} by — biay),

< 5 Sin (5.1)

where af(, Ay bf(, and by are the creation and annihilation
operators for the two sublattices of the crossed-chain lattice
at momentum k=(k,,k,). It can be shown that this is a type
IT time-reversal symmetry-breaking state which can be stabi-
lized by an arbitrarily weak nearest-neighbor repulsive inter-
action for some range of hopping amplitudes and electron
densities.?” Recently, Ran et al. 3, found similar degeneracy
points with *£277 monopole flux in FeAs-based materials

with T symmetry. Hence, similar T symmetry-breaking
phases may be possible in such systems as well.

The state shown in Fig. 7(a) has a close analogy to the
dDW state with d2_2+id,, symmetry [Fig. 2(c) in Ref. 29
and Fig. 1 in Ref. 30]. Both phases are type II T symmetry-
breaking states. They have similar order parameters but with
very different physical origins. First of all, the lattice struc-
ture of our model is a crossed-chain lattice, while the dDW
state is defined on a simple square lattice. Hence, the alter-
nating of the diagonal hopping strength (the crosses) in our
model is due to a lattice effect (an explicit symmetry break-
ing), while in dDW state it is due to spontaneous
translational-symmetry breaking. Second, due to the special
lattice structure of the crossed-chain lattice, a nongeneric
(non-Dirac) band crossing is presented at momentum (7, 77)
in the absence of interactions. This band touching leads to an
infinitesimal instability to the T symmetry-breaking flux
state shown in Fig. 7(a), where the d,>_2+id,, dDW state
requires a finite interaction to be reached.

We end the discussion on lattice models with a few re-
marks on the Emery model, which describes the CuO, plane
of cuprates. The Varma loop 6y state, shown in Fig. 7(b), is
a type I state that breaks the I and T but not the C and IT.3!
Without breaking translational and charge U(1) symmetries,
we show in Figs. 7(c) and 7(d) two other nonmagnetic states
that break the C symmetry as well as T. The state shown in
Fig. 7(c) is the same as the state in Fig. 7(a) if we notice that
the oxygens (p, and p, orbitals) in the Emery model form a
crossed-chain lattice (rotated by 7/4). The state in Fig. 7(d)
involves three bands, and there is a flux piercing each small
triangle formed by neighboring d,2_,2, p,, and p, orbitals. In
each unit cell, three of the triangles have flux ¢ but the
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(a) (b)

(c) (d)

FIG. 7. The T symmetry-breaking (flux) state in (a) the crossed-chain lattice and [(b)—(d)] the Emery lattice. (b) is the Varma 6} loop
state. (a) and (c) are type II T-breaking states, (b) is type I, and (d) is a type I-type II mixed state.

fourth triangle has flux -3¢ with zero total flux in the unit
cell. In this state all the T, C, and I symmetries are broken
(and none of the pairs CT, IT, or CI is preserved) while
TCI remains unbroken. Hence, this state is a mixture of
states of type I and II time-reversal symmetry breaking.

VI. SYMMETRIES AND FINITE TEMPERATURE
TRANSITIONS

For a two-band model for a system in the continuum (i.e.,
ignoring the explicit breaking of rotational symmetry by the
underlying lattice), the «; and B; phases break spontane-
ously two continuous symmetries: the SO(2) rotational in-
variance and the relative U(1) phase symmetry. Hence, two
Goldstone modes are generated in the broken-symmetry
phase. At finite temperatures, the thermal fluctuations of
these two Goldstone modes destroy this long-range order.
The thermodynamic phase transition is in the universality
class of a system of two XY models which will undergo a
Kosterlitz-Thouless-type phase transition.

For the case of the @, and a3 phases, the relative U(1)
phase symmetry of the bands is broken explicitly by the
effects of the interactions, which do not preserve particle
number on each band as a good quantum number. Hence,
only one continuous symmetry, SO(2), remains, and it is bro-
ken spontaneously in this phase at 7=0. Since this is a con-
tinuous SO(2) symmetry, the finite temperature transition be-
tween the normal state and the «, or the a3 phase also
belongs to the Kosterlitz-Thouless (KT) universality class, in
this case with a single SO(2) order-parameter field.

The direct transition from the normal state to the 3, or 33
states was shown in Sec. IV D to be first order at zero tem-
perature. Therefore one expects this transition to remain first
order even at finite temperature up to a critical value where
the phase boundary reaches a tricritical (or multicritical)
point. In general, for a system with full rotational invariance
SO(2), the transition from these phases to the normal state
should be in the KT universality class as well.

For lattice systems, rotational symmetry is broken down
to a discrete subgroup, the point-group symmetry of the un-
derlying lattice. Hence the only continuous symmetry left to
be spontaneously broken in the «; and ; phases is the rela-
tive U(1) phase. Thus, the finite temperature transitions from
the «; and B, phases to the normal state are also KT transi-
tions. For lattice systems in which the a,, B, and a3, B3

phases can be realized there are no continuous symmetries
present since the relative U(1) symmetry is broken by the
interactions. Hence, in general the thermodynamic transi-
tions from the B3, and B; phases to the normal state only
involve the restoration of time-reversal invariance and the
discrete point-group symmetries broken in these low-
temperature phases (up to important caveats discussed be-
low).

For a lattice system, except for the «; and S, phases,
whose existence is not generic and requires fine tuning, the «
and B phases only break discrete symmetries and hence do
not have Goldstone modes in their excitation spectra. As a
result, the fermionic quasiparticles are the only low-energy
excitations in these broken-symmetry phases. This implies
that the Fermi-liquid picture should remain valid in these
low-temperature phases even if the fluctuations are stronger
than what is allowed in a naive mean-field treatment.

We will now give a more careful analysis of the nature of
the thermal phase transitions for the «,, (3,, a3, and s
phases in lattice, which have richer structures, based on an
analysis of the symmetry.

Let us begin by discussing the d-wave type 35 phase in a
square lattice. In this case, in addition to the 7, time-reversal
symmetry, this phase also lowers the invariance under /2
spatial rotation to 7r rotation (2D space inversion), which is
also a 7, symmetry breaking. Formally, the $3; phase has a
broken 7,® 7, symmetry. In the case of the B3, phase, the
situation is similar except that the time-reversal even Z, sym-
metry requires a different physical interpretation (see Appen-
dix D).

From this view point the natural description of the ther-
mal phase transitions out of the 8, or 85 phase should be in
the 2D Ashkin-Teller universality class. In what follows we
will consider the conceptually more straightforward s
phase, but the same analysis also applies to the more intricate
B> phase.

If the low-temperature phase is B35 the phase diagram can
have the general topology of the one shown in Fig. 8(a). As
temperature is raised it may undergo a direct phase transition
to the normal phase or have two thermal transitions. In the
latter case, the intermediate phase arises from the restoration
of one of the 7, symmetries, either time reversal or spatial
rotations. Thus the intermediate temperature phase is either a
time-reversal even nematic phase (the a; phase) or a spa-
tially isotropic phase with broken time-reversal invariance.
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FIG. 8. (Color online) Different possible schematic phase diagrams for thermal phase transitions from the 3, or 85 phases to the normal
phase. Here, “Inter” stands for the intermediate phase which may be the a phase or the isotropic type II time-reversal symmetry-breaking
phase depending on microscopic details, although the mean-field approach can only predict (b) and (c) and requires the intermediate to be

the « phase. The points indicated by B,

T.,, and M, are the bicritical, tricritical, and multicritical points. The thin lines are second-order

transitions and the thick lines stand for first-order transitions. The convention is the same as in Fig. 2. In (a), the multicritical point is a KT
phase-transition point. The phase boundary between the tricritical and the multicritical points has continuous varying exponent, and all other
thin lines in these phase diagrams are Ising transitions. In (c), the phase boundaries (or part of the phase boundary) may be first order in

general.

In any case, the transition between these two states in two
space dimensions is continuous and in the 2D Ising univer-
sality class. One should note that it is possible to conceive
the existence of a spatially isotropic intermediate phase with
broken time-reversal symmetry even at 7=0. However a
state like that cannot be reached within mean-field theory as
it results from the “quantum melting” of one of the 7, states
of the 3 phase.

These arguments suggest that the finite temperature criti-
cal behavior of this system is in general describable by a 2D
classical Ashkin-Teller model, as far as the thermal transi-
tions are concerned. Indeed this would be the case if the two
Ising transitions were to meet at a multicritical point, which
would necessarily be in the 2D four-state Potts model uni-
versality class, a KT transition. If this scenario is correct, the
transition from the 8 phase to the normal state should have a
line of continuous transitions with varying exponents. Since
the quantum phase transition (at 7=0) between the normal
state and the [ phase is first order, this scenario requires the
existence of a tricritical point at some intermediate but low
temperature. A similar phase diagram was found in interact-
ing monomer-dimer models on a 2D square lattice.?

An alternative possible scenario is that the two Ising tran-
sitions do not meet at a multicritical point. Instead, that the
lower temperature Ising transition becomes first order at
some value of the control parameter, i.e., a 2D Ising tricriti-
cal point. The general topology of the phase diagram is de-
picted in Fig. 8(b). Here too the intermediate phase can ei-
ther be an « phase, in which case time reversal is restored at
the lower temperature transition and the intermediate phase
is nematic, or isotropy is restored first and the intermediate
phase breaks time-reversal.

Still a third possibility arises if at 7=0 the 8 and normal
phases are separated by a region of the « phase. In this case

the 7=0 transition is continuous, and one would generally
expect two thermal transitions, as shown in Fig. 8(c), with an
intermediate temperature phase that at least at low tempera-
tures must be an « phase. The possibility of another interme-
diate phase discussed above, isotropic and T breaking, can-
not be excluded even in this scenario.

Finally, let us consider briefly the case of Cg, lattice sym-
metry breaking, beyond the C,, symmetry of the square lat-
tice we have been discussing here, i.e., simple triangular and
honeycomb lattices. We will now have to consider more gen-
eral angular momentum channels, with € even or odd. Spe-
cifically, for the simple triangular and honeycomb lattices the
simplest cases of interest have £=2 and €=3 broken by the
Ce, symmetry. An example of this is the one-band model on
a simple triangular lattice discussed above.

Two-band models on these lattices allow for a richer
structure. The simplest case is a B; state with an €=3
particle-hole condensate without relative particle-number
conservation of any type. This state breaks spontaneously the
7, inversion symmetry and the 7, chiral symmetry. Hence,
the thermal transitions to the normal state of this phase also
have a 7, ® Z,, as in the square lattice case discussed above,
with a phase diagram similar to those in Figs. 8(a)-8(c). (Just
as in the case of the square lattice, this analysis also applies
to the phase 3, with the same caveats on the interpretation of
the symmetries.)

A different symmetry-breaking pattern arises on both the
simple triangular and honeycomb lattices if the condensate is
in the €=2 particle-hole channel. In the B; state with €=2,
the Cy symmetry is lowered to C, (inversion in 2D) symme-
try, where the C; axis is lifted. Hence, Z3=C4/C, is the
broken rotational symmetry manifold of the order parameter.
In addition to this Zs, this phase also breaks the 7, time-
reversal symmetry, which here is equivalent to chiral sym-
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TABLE 1. Conductance tensors for different phases.

Oxx—Oyy Oxy Oabe
Normal phase Zero Zero Zero
Nematic (€=2 phases) Nonzero Zero Zero
Type I (€=3 phases, T and I odd) Zero or nonzero Zero Nonzero
Type I (B, £=2 phases, T and C odd) Zero or nonzero Nonzero Zero

metry. Hence, it breaks a 7Z;®7Z, symmetry. The thermal
phase diagram for this 73 ® 7, problem is more complex (and
old problem) than the cases we presented above (see Refs. 33
and 34 and references therein). The structure of the phase
diagram can be summarized in three cases: (a) a direct tran-
sition to the normal state, (b) an intermediate temperature
critical phase, and (c) an intermediate phase with long-range
order. In the first case, the transition between the B; phase
and the normal phase is a direct first-order transition (similar
to that of the closely related six-state Potts model). In the
second case, there is a finite range of temperatures in which
the system is critical, as in the Z¢s model, and has two KT-
type transitions at each end point. The third case consists of
a sequence of partial restorations of the 73 and 7, broken
symmetries of the (3 state through intermediate temperature
phases with either Z; nematic order and no broken time-
reversal symmetry or with broken time-reversal invariance
and full isotropy.

VII. DISCUSSION

We studied microscopic fermionic models (generally in
metallic phases) with spontaneous breaking of time-reversal
invariance. We considered one-band models and two-band
models (ignoring spin) with and without separate conserva-
tion of particle number in each band. The time-reversal
breaking phases can be classified in two classes:

(1) Type I phases, which break time reversal (T) and
space inversion (I) but do not break chirality (C). We found
that type I phases occur in both one-band and multiple-band
fermionic systems in a generalized nematic ground state with
a (particle-hole) condensate in an odd angular momentum
channel. Examples of type I phases we discuss are one-band
nematics with €=3 and two-band models in the «; state,
which has a particle-hole condensate with € odd without in-
dependent particle number conservation in each band.

(2) Type II phases, which break time reversal (T) and
chirality (C) but do not break space inversion (I). Type II
phases have a spontaneous (nonquantized) anomalous Hall
effect. We found that type II phases are not realized in one-
band models. In two (and multiple) band models they occur
in interband particle-hole condensates with even angular mo-
mentum if particle number is not separately conserved in
each band (B; phases),” and in any angular momentum
channel € =1 provided particle number is either preserved in
each band (B, phases) or conserved mod 2 (3, phases).

Each class of states has unique experimental signatures
that can be detected in linear and nonlinear conductivity
measurements and in the optical response with polarized
light.

Let us discuss first how these phases can be detected in
transport. It is well known that electronic nematic phases
induce an anisotropy in the conductivity tensor.”!8363% In a
metallic system, an in-plane electric field E induces a current
j which can be expanded as a power series in the electric
field E,

JO= OWE" + 0 EPEC+ -+ (7.1)

with a, b, and ¢ being x or y. The first term in Eq. (7.1) is the
linear response, and the second term is the leading nonlinear
response. The different components of the conductivity ten-
sor (and of the nonlinear response) can be arranged to trans-
form properly under chiral C and space inversion I symme-
tries and can be used to detect these broken-symmetry phases
in experiment. Thus, the conductivity tensor is sensitive to
both rotations under 90° and chirality, while the third rank
nonlinear conductivity tensor is odd under inversion. To de-
tect systems with condensates with € >3, it is necessary to
consider higher-order nonlinear response terms. Thus, one
can construct phenomenological “order parameters” using
the electrical response tensors, and the simplest ones are pre-
sented in Table I.

The signatures of type I T breaking phases can be de-
tected through nonlinear optical processes, such as polarized
Raman scattering. [They can also be checked directly by
angle-resolved photoemission spectroscopy (ARPES) by de-
tecting the anisotropy of the Fermi surface.] On the other
hand, type II phases, such as the 8 phases, can be detected
optically through a nonzero Kerr effect (in the absence of
external magnetic fields).

The problem of constructing phases of electronic systems
with broken time-reversal invariance was presented here
mainly from its intrinsic conceptual interest. Our interest in
this problem has been to a large extent motivated by the
recent discovery of time-reversal symmetry-breaking effects
in the ruthenates and in the cuprates. We should stress that
although the theory we presented in this paper as it stands
cannot describe a strongly correlated system, the patterns of
symmetry breaking, as well as their consequences, should be
of more general validity. The strongest experimental evi-
dence available to date of time-reversal symmetry breaking
in superconductors is in the layered compound Sr,RuQ,.
Kerr effect rotation experiments®® and corner junction
experiments*! strongly suggest that this material may indeed
have a p-wave superconducting state which breaks spontane-
ously time-reversal symmetry. This is consistent with a the-
oretical prediction*? of a condensate with a p,+ip, order-
parameter symmetry. This evidence is however not fully
uncontroversial given the conflicting experimental results of
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Ref. 43 which, so far, have failed to detect the expected edge
currents of the p,+ip, superconductor. Recent high-precision
Kerr rotation experiments** have now given evidence of
weak but detectable time-reversal symmetry breaking in the
underdoped pseudogap regime of the high 7. compound
YBa,Cu;0g,,. Neutron-scattering experiments in under-
doped YBa,Cu;0q,, (Refs. 45 and 46) and in HgBa,CuOy,,
(Ref. 47) similarly suggest that the breaking of time-reversal
invariance may also occur in these materials. These recent
discoveries in the cuprates and in Sr,RuO, have renewed
interest in the possible mechanisms of time-reversal symme-
try breaking in strongly correlated systems. However, it is
worth noting that, in addition to the noted evidence of time-
reversal symmetry breaking, neutron-scattering
experiments*® and transport experiments’’ find strong evi-
dence for nematic charge order in YBa,Cu30g,, in the same
doping range. It is unreasonable to believe that these two
phases can be unrelated to each other, and perhaps they have
a common origin. In this sense, the phases found in this
paper may shed some light on these issues.

One important problem that we have not discussed in this
work is the role of disorder in these phases. It is well known
that disorder couples as a random field to the order parameter
of anisotropic nematiclike phases,’**° destroying the ordered
state and rendering the system glassy. The same applies to
other phases we discussed here that break spontaneously ei-
ther point-group symmetries and/or inversion. On its own,
nonmagnetic disorder cannot couple directly to the chiral
symmetry and does not destroy automatically a type II time-
reversal breaking state. However, if the spin degrees of free-
dom are also included even nonmagnetic disorder can couple
indirectly to time-reversal breaking order parameters through
the effects of spin-orbit interactions. In this case the system
becomes a T-breaking glassy state. On the other hand, dis-
order can induce T and C breaking effects in phases such as
type I states by breaking locally translation, inversion, and
point-group symmetries of the system. In any case, the time-
reversal symmetry-breaking effects induced by disorder
should be quite weak.*

Other states that break time-reversal symmetry to varying
degrees have been postulated in the context of high 7. com-
pounds. These states assume the existence of spontaneously
circulating currents in the ground state. They include the
loop state advocated by Varma,'** which breaks time rever-
sal but not translation invariance, and the d-density wave
(dDW) state by Nayak and co-workers,?>>! a dDW state that
breaks time reversal and translation invariance (by one lattice
spacing) but is invariant under the simultaneous action of
both transformations. In the absence of disorder neither of
these states exhibits a uniform Kerr effect. Tewari et al.*
proposed a dDW state with d,2_2+id,, symmetry that breaks
translational symmetry and has nonzero Kerr effect.

There is a close analogy between the 8 phase and the
petip, (or dyo_p+id,,) superconducting state. They both
need two real order parameters that couples the SO(2) rota-
tional symmetry and an internal U(1) symmetry to break the
T and C symmetries. The U(1) symmetry in the p,+ip, spin
triplet condensate in the particle-particle channel in super-
conductors is the charge (gauge) U(1) symmetry, which is an
exact symmetry of the system and cannot be broken explic-
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itly. On the other hand, the formally analogous S phase is a
particle-hole condensate which breaks spontaneously the
relative U(1) phase symmetry of a multiband system. This
symmetry in general is not exact but it is asymptotically
exact emergent symmetry at the Fermi-liquid fixed point
since the symmetry-breaking terms are formally irrelevant
(dangerous irrelevant) operators which are always present in
any real system. The difference between exact and emergent
symmetries has a direct consequence on the structure of the
phase diagram, rendering the quantum phase transition from
the normal state to the B phase first order or through an
intermediate « phase.

Our B phases have a close similarity with the phases (with
the same name) in spin-1/2 fermionic systems with aniso-
tropic phases such as those discussed in Refs. 8 and 10.
However, the B8 phases of those systems are not type II T
symmetry-breaking states for two reasons. First under time
reversal all three components of the spin polarization of the
quasiparticles change sign. In contrast, here we have used the
Pauli matrices to act on an internal space unrelated with the
electron spin, a pseudospin representing the multiple elec-
tronic bands. In our case only the complex, o, component is
odd under time reversal. Second, the internal symmetry in
our problem is only an approximate U(1) phase symmetry,
while in the spin problem it is the full SU(2) group (in the
absence of the spin-orbit couplings). We have shown that for
systems with N degenerate bands, the (natural) symmetry is
SU(N) (N=2 for this case) and the Berry connection A,
defined in Sec. II, is always trivial and it can always be
eliminated by a gauge transformation (it is a gauge transfor-
mation) due to Eq. (Al). Hence, the actual Berry phase [no
matter U(1) or SU(2)] is zero if the SU(N) symmetry is
exact. As a result, in the fully symmetric case (as well as in
the spin-1/2 model) there are no type II T symmetry-
breaking states. This can also be seen if we notice that the
map from the Fermi surface to the internal U(1) group is
S'— 8!, which has a nontrivial homotopy group, (S"),
with a nonvanishing Kronecker index. In contrast, for the
case of spin-1/2 systems, the mapping S'—SU(2) has a
trivial homotopy, 7;[SU(2)]=0, and does not have a non-
trivial topological index. We should emphasize that the elec-
tronic quasiparticles of the systems we have considered do
carry spin-1/2, but these degrees of freedom play no role in
the phases we have discussed as they are paramagnetic.
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APPENDIX A: TWO-BAND MODELS

a
nm

By definition, the matrix A% = satisfies
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b b . b b
Vﬁ'Ann - Vk'AZn == lz ('AZm‘Amn - Anm‘Aamn) . (Al)
m

This constraint on A; = implies that the off-diagonal terms
and the diagonal terms are related. It follows that

2 (VA = Vied;,) =0, (A2)
n
which leads to the conclusion that there is no Berry phase in
the overall (charge) U(1) sector.

For a two-band model, we can construct three gauge in-
variant objects that are sensitive to time-reversal symmetry
breaking,

RAD = VRAS, (A3)
VﬁAgz - Vlb(ALzlz’ (A4)
iAL AL, —i AT, AS,. (A5)

However, due to Eq. (Al), only one of them is linearly in-
dependent.

Hence, in the study of the T symmetry breaking in any
two-band model, only the diagonal term Af{, (or .A3,) is
needed to be considered. The same conclusion is trivially
valid for one-band models.

APPENDIX B: THE TOPOLOGICAL AND PHYSICAL
MEANING OF WILSON LOOPS

From a topological point of view, in a two-band model, a
unitary transformation at momentum k belongs to the group
U(2). By removing the U(1)® U(1) gauge degrees of free-
dom, the physical degrees of freedom are in the manifold
U(2)/[U(1) @ U(1)]=52. Hence, for each closed loop I' in
momentum space, a map S' — S? can be defined. Similar to
the coherent-state path integral of spin 1/2 (see, for instance,
Ref. 17), this map leads to a Wess-Zumino term. We will
show here the Berry phase studied in the main text is half of
the Wess-Zumino term of this map (mod 2 7).

For a two-band model, the kinetic-energy part of the
Hamiltonian is a 2 X2 Hermitian matrix, which can be ex-
panded in the basis of the identity matrix and the three Pauli
matrices:

Hy(k)=Hyl + H.o,+ Hyo, + H,0,.
Away from degeneracy points, \1H§+H3+H§ is nonzero.
Hence, we can define a 3D unit vector,
(Hst'st)

VH + H: + H?

(B1)

n=

(B2)

j

From a topological point of view, this 3D unit vector field is
a map from the momentum space (with degeneracy points
removed) to S2.

If we define the polar coordinates of the unit vector 71 as 6
and ¢, where n=(sin @cos ¢, sin §sin @, cos 6), the
Hamiltonian can be diagonalized by a unitary transforma-
tion, U'Hy(k)U, where
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) 0 . .
cos—e'2  —gin—e 2T

2

U= (B3)

6 . .
sin—e'®27'¢  cos—e™'%2
2 2

Here ¢; and ¢, is any function of the momentum, which
reflects the U(1) ® U(1) gauge freedom in a two-band model.
Therefore, we get

1—-cos 6
Al =Vile+ o= @) + —(———

Vie. B4
9 k¥ (B4)
The loop integral around contour I' is
1 —cos @
Op=, 3@ Al dk* =2n+ 3€ —— Ve - dk,
a JT r 2
(B5)

where 7 is an integer measuring the winding number of the
angle ¢+ ¢,—¢. By comparison, the Wess-Zumino term of
the map from I' to S? is

f f l/_{ (akxl’-[ X ﬁk‘wﬁ)d2k= 4n77+§ (1 — COS H)quo -dk.
B . r
(B6)

Here B is an arbitrary 2D manifold whose boundary dB is I'
and n is an integer determined by the choice of B. Hence, we
conclude that the Berry phase ®r is half of the Wess-Zumino
term up to 2nr.

Under a change in chirality, the Wess-Zumino term
changes sign (mod 4). Therefore, Wi changes into W un-
der C, which is the same as IT. Hence, W is invariant under
CIT.

APPENDIX C: HALL CONDUCTANCE

For the Hamiltonian shown in Eq. (B1), the Hall conduc-
tance oy, can be evaluated as in Ref. 52, using the three-
component unit vectors 72(k) defined in Eq. (B2),

&’k .. R
0'”=J‘J—n((9kn><(9kﬁ‘)
; g 4m x y

Here the integration region B is the area in momentum space
where one band is filled and the other is empty.

For insulators, the region B is the whole momentum space
(the first Brillouin zone for lattice models), which is a com-
pact manifold. Hence, o, is the Kronecker index of the map-
ping from a compact manifold to S2, the first Chern number,
which is quantized to be an integer. It measures how many
times the compact manifold wraps around the sphere S2. For
conductors, the boundary of B is the Fermi surface, which
implies that B is not a compact manifold. Hence, for conduc-
tors in general o, is not quantized.'

Using the conclusion from Appendix B, the Hall conduc-
tance o, can be related to the loop integral ®r as

(C1)
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Pr
O-xy - 277_’ (Cz)
where the contour I' is the boundary of B, which is the Fermi
surface, and we choose the gauge where A{, is analytic in
region B to remove the 2n uncertainty in ®r. This result is
straightforward if we notice that ® contains all the informa-
tion of T and C symmetry breaking in two-band models.
Therefore, o,,, which measures the type I T symmetry
breaking at low energies, must be directly related with ®r.,
where I' is the Fermi surface, which dominates the low-
energy physics.

APPENDIX D: SYMMETRY ANALYSIS OF THE a, AND
B, PHASES

For a d-wave-like (£=2) «a, phase on a square lattice, the
symmetry breaking is reduced from C4, ® 7, to C,,®7,. In
the normal phase, in addition to the point-group symmetry of
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the square lattice Cy,, there is an internal 7, symmetry cor-
responding to the relative phase shift by 7 between the two
bands of a system, in which the relative particle number is
conserved mod 2, and the relative U(1) phase symmetry is
thus reduced to phase shifts of the electron wave functions
between the two bands by m, ¢, — ¢, and ¢, ——i. In the
a, phase, the order parameter is blind under the simultaneous
action of a /2 spatial rotation and the relative phase shift by
7. Hence, the resulting symmetry of the ordered phase is
C,, ® Z,. Therefore, the thermal phase transition from the «,
state to the normal state is in the 2D Ising universality class.
The same analysis applies to the a3 phase, except that the
broken 7, symmetry is simply C,,/C,,, which only involves
the spatial symmetry.

For the 8, phase, in addition to the 7, symmetry breaking
just discussed above, an additional 7, time-reversal symme-
try is broken. Hence, the B3, phase has a broken 7, ® 7, sym-
metry.
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